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Abstract:  A study of thermal instability driven by buoyancy force is carried out in an initially quiescent infinitely extended 

horizontal rotating fluid layer. The time periodic gravity field is considered and its effect on the system has been investigated. A 

weakly nonlinear stability analysis is performed for the oscillatory mode of convection, and heat transport in terms of the Nusselt 

number, which is governed by the complex non-autonomous Ginzburg-Landau equation, is calculated. The influence of external 

controlling parameters like amplitude and frequency of modulation on heat transfer has been investigated. For lower values of Pr 

< 1 oscillatory mode of instabilities are possible. The duel effect of rotation on the system for oscillatory mode of convection 

either is to stabilize or destabilize the system has been found. Further, the study establishes that the heat transport can be 

controlled effectively by a mechanism that is external to the system. Finally oscillatory mode of convection strengthens the heat 

transfer rather than stationary mode. 

Index Terms - Oscillatory convection; Gravity modulation; Weak nonlinear stability; Rotating fluid  layer. 

Nomenclature 

Latin Symbols 

𝔸  Amplitude of convection 

δ  Amplitude of thermal modulation 

g   Acceleration due to gravity 

aTR   Thermal Rayleigh number, Ra = T

T

g TdK

k
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Critical Rayleigh number 

a   Critical wave number 

d    Depth of the fluid layer 

( , )x z   Horizontal and vertical co-ordinates 

Nu   Nusselt number 

p   Reduced pressure 

   Stress relaxation time   

   Strain retardation time 

T   Temperature 

T     Temperature difference across the porous layer 

Ta   Taylor number, 

2
22

Ta = 
d



 
 
 

 

t   Fast Time scale 

 

Greek Symbols 

T   Coefficient of thermal expansion 

   Dimensionless oscillatory frequency 

   Dynamic viscosity of the fluid 

T   Effective thermal diffusivity 

   Fluid density 

                     Frequency of modulation 

   Kinematic viscosity,  

2 2 2

2 2 2x y z
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𝒳  Perturbation parameter 

θ  Phase angle 

   Heat capacity ratio 
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s   Slow time scale, s=𝒳2t 

   Stream function 

k   Vertical unit vector 

Other symbols 
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Subscripts 

b   Basic state 

c  Critical 

0   Reference value 

Superscripts 

∗  Dimensionless quantity 

'    Perturbed quantity 
 

1. INTRODUCTION 

Gravity modulation, which can be realized by vertically oscillating a fluid layer, is a mecha-nism which can be used to alter the 

convective flow. The problem of convection in a fluid layer in the presence of complex body forces has gained considerable 

attention in recent decades due to its promising applications in engineering and technology. The time dependent gravity field one 

of the complex forces, is of interest in space laboratory experiments, in areas of crystal growth etc. It is also of importance in the 

large scale convection in atmospheres, oceans, planetary mantles, and it provides the mechanism of heat transfer for a large 

fraction of the outermost interiors of our sun and all stars. The random fluctuations of gravity field both in magnitude and direction 

can be experienced in space laboratories significantly influence natural convection. Gresho and Sani [1] have studied the linear 

stability of a fluid layer with rigid boundaries and found the in uence of the gravity modulation on the convection threshold of the 

system. Wadih and Roux [2] have studied the case of a fluid occupying a cylindrical cavity of infinite length and submitted to a 

negative temperature gradient maintained in the upward direction. Clever et al. [3] considered the problem of two dimensional 

oscillatory convection in a gravitationally modulated fluid layer. They have also analyzed three dimensional oscillatory convection 

under gravity modulation in [4]. Gravity modulation in a fluid layer has been studied Bhadauria et al. [5]. Malashetty and Swamy 

[6] reported the effect of gravity modulation on the onset of thermal convection in a fluid and porous layer using linear stability 

analysis. One can readily analyze from the results that the effect of gravity modulation on RayleighBenard convection is similar to 

that of asymmetric thermal modulation. Siddheshwar et al. [7] performed a local nonlinear stability analysis of Rayleigh Benard 

magneto-convection using GinzburgLandau equation. They showed that modulation can be used to enhance/diminish the heat 

transport in a stationary magnetoconvection. Bhadauria et al. [8-19] studied the effect of internal heating on Rayleigh-Benard 

convection under gravity modulation, they found that internal heat generation, amplitude of modulation is to enhance the heat 

transfer and frequency of modulation is to reduce the heat transfer. 

Rotating the fluid layer around an axis perpendicular to the layer, the classic pattern of convective flow above a critical value of 

the rotation speed can be unstable even the smallest temperature differences the patterns change with time. These changes do not 

happen locally constant transition from one pattern to another. Rather, the change is done globally and suddenly. This 

phenomenon in the literature is known as Kuppers-Lortz instability. This effect plays a role in brain research in the explanation of 

spontaneous perceptual change in optical illusions, for example the Necker cube. Buoyancy driven convection in a horizontal 

rotating fluid layer rotating about the vertical provides one of the classical examples of hydrodynamic instability (Veronis [9], 

Chandrasekhar [10]). The system is of interest because convection can set in either stationary mode or via oscillatory mode 

depending on the values of Prandtl and Taylor numbers. In the weakly nonlinear regime classical perturbation theory has revealed 

branches of steady convection near the steady state bifurcation and branches of different types of standing and travelling waves 

near the Hopf bifurcation. When these bifurcations are near one another one can study the interaction between steady and 

oscillatory convection at small amplitude. This study has revealed different ways whereby oscillations, be they in the form of 

standing or travelling waves; give way to steady convection as the Rayleigh number increases. Kuppers-Lortz [11] the stability of 

convective flow is investigated in a rotating fluid layer for rigid boundary conditions. The critical Taylor number above which the 

only stable two dimensional flows become unstable is calculated as a function of the Prandtl number. 

Donnelly [12] he found that sinusoidally modulated rotation of the inner cylinder can be inhabited instability of Couette flow. The 

origin of the inhibition has been shown experimentally to be due to the viscous wave propagated across the annulus by the 

modulated cylinder. Rauscher and Kelly [13] analyzed the combined effect of thermal modulation and rotation on the onset of 

convection in a rotating fluid layer for the case of the lower wall temperature modulation. They reported that high Taylor number 
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has destabilizing effects over a range of frequencies, contradictory to the classical stabilizing effect of Taylor number at small 

values. For small Prandtl numbers, convection in a rotating fluid layer can begin in an oscillatory manner and the modulation 

might be expected to have more of a resonant effect. Knobloch [14] analyzed Kuppers-Lortz instability. He found that in this 

instability a pattern of parallel rolls becomes unstable to another set of rolls oriented at an angle with respect to the first, once the 

rotation rate exceeds a critical value. This new set is itself unstable in the same fashion etc., resulting in complex dynamics right at 

onset. He also found instabilities (standing or traveling rolls) are triggered by the formation of heteroclinic orbits connecting two 

sets of standing or traveling rolls with different orientation. 

Kloosterziel and Carnevale [15] investigated onset of convection in a closed form of Rayleigh-Benard convection considering 

rigid stress free upper and lower boundaries. They determined analytically critical points on the marginal stability boundary above 

which an increase of either viscosity or diffusivity is destabilizing. Finally, they show that if the fluid has zero viscosity the system 

is always unstable, in contradiction to [10] conclusion. Malashetty and Swamy [16] investigated temperature modulation in a 

rotating fluid layer using linear theory. It is observed that the instability can be enhanced by the rotation at low frequency 

symmetric modulation and with moderate to high frequency lower wall modulation, whereas the stability can be enhanced by the 

rotation in case of asymmetric modulation. They also found that by proper tuning of modulation frequency, Taylor number and 

Prandtl number it is possible to advance or delay the onset of convection. Bhadauria et al.[17] considering stationary mode of 

convection in a rotating fluid layer they have investigated effects of temperature and gravity modulation while assuming stress-

free isothermal boundaries. They found that rotation reduces heat transfer for both modulations while both modulations can be 

used to regulate heat transfer by suitably tanning amplitude and frequency of modulations. Bhadauria et al. [18] investigated 

rotation speed modulation of Rayleigh Benard convection while accounting the effects of internal heating and temperature 

dependant viscosity. They found that, rotation and frequency of modulation reduces heat transfer while internal Rayleigh number 

enhances heat transfer in the system. 

Thus, it is clear that, although a few studies are available in the literature on weakly nonlinear stationary convection under 

modulation, not even a single study is reported on weak nonlinear oscillatory mode of convection under modulation. Recently 

Bhadauria and Kiran [19, 20] investigated weak nonlinear analysis for supercritical flow in a viscoelastic fluid and porous layer 

under gravity modulation. Where they derived an amplitude of convection using non autonomous complex Ginzburg-Landau 

equation ([21]- [23], [35]-[40]). They revealed that the heat transfers more in oscillatory mode rather than in stationary mode. 

Further, it is also said the modulation can be used effectively to regulate the system. This motivated us to study a weak nonlinear 

convection problem in a rotating fluid layer under gravity modulation for oscillatory mode, using a complex Ginzburg-Landau 

equation, and in the process quantify the heat transfer across the fluid layer in terms of the Nusselt number. 

 

2. GOVERNING EQUATIONS 

We consider a layer of an incompressible viscous fluid, confined between two infinitely extended parallel horizontal planes, z = 0 

and z = d, at a distance ‘d’ apart. The fluid layer is heated from below and cooled from above. 

 

A Cartesian frame of reference is chosen in such a way that the origin lies on the lower plane and the z-axis is vertical upward. 

The layer is rotating about the z-axis with a constant angular velocity (Fig. 1). The fluid layer is considered to be Boussinesq and 

under these conditions the governing equations for a rotating viscous fluid layer are given by ([10, 17]): 

. 0,q             (1) 
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where  , ,q u v w is the fluid velocity, p is pressure,  is rotational velocity about z-axis,  kinematic viscosity,  is the 

density of the fluid, 
0 reference viscosity, T is thermal diffusivity of the fluid layer, g is gravity field, T is temperature, T

thermal expansion coefficient. The externally imposed thermal boundary conditions and gravity field are given by 

 
0

0

, 0

,

T T T at z

T T at z d

  

 
         (5) 

 2

0
ˆ1 cos( ) ,fg g t k              (6) 

Where  , the temperature difference is across the fluid layer,  are the reference values of temperature and density of the fluid,  

small amplitude of modulation,  is modulation frequency. A hydrostatic solution exists for the governing equations with boundary 

conditions described above. The solution is given by  0, ( , ), ( , ), ( , ).b b b bq p p z t T T z t z t      

2

2
0,b

T

T

z






               (7) 

The solution of Eq. (7) subject to the thermal boundary conditions Eq. (5), is given by: 

0

2
1 .

2
b

T z
T T

d

  
   

            

   (8) 

Now introducing perturbed quantities , , , ,b b b bq q q p p p T T T                for two-dimensional convection, 

using stream function   as ,u w
z x

  
   

 
 , we non dimensionalize the above equations with the following scales;    
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    Finally by eliminating the pressure 

term and dropping asterisk, we obtain the non-dimensional governing system as 
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also from the momentum equation (9), we may write the following equation for        

 
21 1 ( , )

.
Pr Pr ( , )

V
Ta V

z t x z

    
   

     

           (11)  

The above system of equations (9)-(11) will be solved by considering stress free and isothermal boundary conditions as given 

bellow 

 

2

2
0 0, 1.

V
T z z

z z




 
     
 

             (12) 

We now introduce a small perturbation parameter     that shows deviation from the critical state of the onset of convection, then 

the variables for a weak nonlinear state may be expanded as power series of    as: 
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                 (13) 

where R0 is the critical value of the critical Rayleigh number at which the onset of convection takes place in the absence of 

gravity modulation. The expression  of is consistent with the basic state solution provided that 
0 vanishes at the lowest order. 

In addition, unless 1  vanishes, the equations obtained at order   and 
2 present a singularity in the solution. These 

observations indicate that the effects of gravity modulation should be introduced at thereby enabling consistency. The 

reader may also note that, this type of expansion (13) was first used by Malkus & Veronis [30] (reader may also see Venezian 

[31]) in connection with convection problems to consider the effects of finite amplitude convection. It is required that expressions 

(13) satisfy the equations of motion (9-11) for all values of  less than some maximum  . The coefficients of each power of 
generated by substituting the Eq.(13) into the system of Eqs.(9-11) must vanish individually and the resulting series for each of 

the variables must converge if relations (13) are to represent a satisfactory solution to the problem. 

 

3.  BIFURCATION OF PERIODIC SOLUTION 

In order to allow for anticipated frequency shift along the bifurcation solution, we introduce the fast time scale of time τ and the 

slow time scale of s. Therefore, the scaling of time variable is such that 
2

t s




  
 

  
 given in [35-40]. In the first order 

problem, the nonlinear term in energy equation will vanish. Therefore, the first order problem reduces to the linear stability 

problem for over stability. 

 

3.1 AT THE LOWEST ORDER 

At first order we consider the following system in which the nonlinearity skipping: 
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            (14) 

The solution of the lowest order system subject to the boundary conditions, Eq. (12), is assumed to be of the form 

 1  (𝔸1(s)eiωΤ+ 𝔸1(s)e-iωΤ)sinax sinπz,              (15) 

1T  (𝔹1(s)eiωΤ+ 𝔹1(s)e-iωΤ)cosax sinπz,              (16) 

1V  (ℂ1(s)eiωΤ+ 𝔹1(s)e-iωΤ)sinax cosπz,              (17) 

The above Eqs.(15-17) represents standing waves. Travelling waves are excluded, the reason is that, the symmetry around the 

rotation axis has to be imposed, the later requiring the stream function to be zero at x=0. The undetermined amplitudes are 

functions of slow time scale and are related by the following relation: 

𝔹(s)=
a

c i
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where c = a2 + π2. The thermal Darcy-Rayleigh number for stationary mode of convection can be given as: 

2 2
3 2

2

0 2
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2

2 2

Pr Pr ,

Pr

c
T

R
c c

a a
c

a
 





 
  

   
  
 

                 (20) 

     

                                                                                                              (21) 

It is obvious from the above expression (Eq.21) that,   becomes complex quantity when Pr exceeds one, since   must be a positive 

real quantity (for the oscillatory convection to be possible), Pr values are considered less than one. Therefore, for pure fluids, over 

stability is possible only for values of Prandtl numbers less than 1 to obtain real frequencies. For stationary mode of convection the 

critical Rayleigh number we obtain as when (  = 0), 

2

3 2

0

Ta
R

c

a


             (22)  

which is the result obtained by Bhadauria et al. [17]. It can be observed that the mode of oscillatory convection exists when the 

Taylor number satisfies the following inequality: 

 

3

2

(1 Pr)

(1 Pr)
Ta c






                     

  (23)  

The wave number corresponding Rayleigh numbers can be obtained by minimizing Rayleigh 

number with respect to critical wave number. 

 

3.2 IN THE SCOND ORDER  

In this state we consider the nonlinear terms in the equations: 

1 1( , )

( , ) 2

T a

x z

 


 ,

 {𝔸1(s) 𝔹1(s) + 𝔸1 (s) 𝔹1(s) + 𝔸1(s) 𝔹1(s)+ 𝔸1(s) 𝔹1(s)}sin2πz.      (24) 

From the above relation, we can deduce that the velocity and temperature fields have the terms having frequency 2ω and 

independent of past time scale. Thus, we write the second order temperature term as follows:  

T2 = {T20 + T22e2iωτ + T 22e−2iωτ} sin 2πz                                                                               (25) 

where T22 and T20 are temperature fields having the terms having the frequency 2ω and independent of fast time scale, 

respectively. The solutions of the second order problem are: 

0 0,                    (26) 

20
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a
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,

 {𝔸1(s) 𝔹1(s)+ 𝔸1(s) 𝔹1(s)},                     (27) 
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 , 
𝔸1(s) 𝔹1(s),                                                         (28)  

Similarly we consider (for mathematical traceability) 
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For solving the system. The solutions are:    
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20
8
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  {𝔸(s) ℂ(s)+ 𝔸(s) ℂ (s)},              (30)  

22
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a
V
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  𝔸(s) ℂ(s)                                                          (31)  

The horizontally averaged Nusselt number Nu(s) for the oscillatory mode of convection is given 

by: 

2 2

0

( ) 1
z

T
Nu s

z




 
   

 
              (32) 

Substituting the expression of T2, given in Eqn. (25), one can simplify Eq. (32) as 

2
2

2 2 4 2 2 2
1

2( ) 2 (4 ) ( )

c
Nu a

c c



   

 
   
      

2

1( )A s
     

   (33) 

The above Nusselt number is defined at lower boundary z = 0 only, since we are heating from the bottom and analyze how does 

heat transport varying in the system. It is clear that the gravity modulation is effective at third order and affects Nu(s) through 𝔸(s) 

which is evaluated at third order. We calculate the mean value of Nusselt number (Nu) for better understanding of the results on 

heat transport. However, a representative time interval that allows a clear comprehension of the effect needs to be chosen. The 

interval (0, 2π) seems to be an appropriate interval to calculate (Nu). The time-averaged Nusselt is defined as:   

2

0

1
( ) .

2
Nu Nu d



 


            (34) 

3.3 AT THE THIRD ORDER  

At this stage we have the following relations: 
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 (35)    

The expressions for R31, R32 and R33 given in appendix can be evaluated using the values of, T1, V1 and T2. Now under the 

following salvability condition 

 

2

1

31 1 32 1 33 1

0 0

0
a

R R T R V dx dz



               (36) 

yield the following complex Ginzburg-Landau equation that describes the temporal variation of the amplitude A(s) of the 

convection cell 

 
21 11

1 1 1 1 1

( )
( ) ( ) ( ) 0.

A s
F s k A s A s

s

 
  

         

 (37) 

Writing A1(s) in the phase-amplitude form, we get 

  A1(s) = |A1(s)| eiφ           
                                                                                                (38) 

Now substituting the expression Eq.(38)in Eq.(37), we get the following equation for the amplitude |A1(s)|: 
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1

( ( ( )))
( )i i

d ph A s
p l A s

ds
            (40) 

where  γ1
−1

F (s)  =  pr + ipi,  γ1
−1

k1  =  lr + ili  and  ph(.)  represents the  phase  shift.   We solve equation (39) using the 

inbuilt solution NDsolve of Mathematica 8, subjected to the condition (0)=a0 where a0 is chosen initial amplitude 

of convection. In our calculations we may use R2= R0 to keep the parameters to the minimum. 

4. RESULTS AND DISCUSSION 

In the light of earlier work Bhadauria et al. [17] studied a weak nonlinear stability analysis for stationary mode of convection of 

related problem. It is quite important to study thermal instability in a rotating fluid layer under oscillatory mode of convection 

where instabilities set in before stationary convection. As of now a lot of research work has been reported for heat transport under 

various physical models while considering weak nonlinear theory for stationary mode of convection. A close observation on 

modulation of Rayleigh-B'enard convection is to find externally adjusting parameters which controls convective phenomenon. 

Such a candidate gravity modulation is considered in this paper to investigate supercritical flow in a rotating fluid layer. As 

pointed out by Bhadauria et al. [19, 20] the oscillatory mode of convection exist when the Taylor Ta and Prandtl Pr numbers 

satisfies the relation given in Eq.(23). With this relation it is quite important to consider Pr<1 for the present problem, hence the 

effect of local acceleration term 
1

Pr s




 is effective and affect the momentum equation. Vadasz [26] pointed out that for only low 

values of Pr oscillatory mode of convection is possible for fluid layer whereas for porous medium is not limited to a particular 

domain of Prandtl number for over stable convection. We also consider low values of amplitude 2  and frequency of 
f of 

modulation since for low values of amplitude 2 , frequency of 
f of modulation is the maximum heat transfer in the system. The 

results corresponding to the gravity modulation has been depicted in figures [2-11], where we have plotted Nu with respect to the 

slow time s. At lower values of time, there obviously is only conduction and we then have a value of Nu=1 at these times. Nusselt 

number increases with increase in time and exceeds the value of 1 indicating the convective contribution to the heat transport. 

The gravity plots presented in figure 2-11, where the nature of the figures is oscillatory due to modulation effect. We know that 

Prandtl number is the ratio between momentum diffusivity and thermal diffusivity. The diffusion of mass due to density 

differences arising due to variation in density is the momentum diffusivity. Thermal diffusivity is the rate at which the diffusion of 

heat takes place in the fluid due to its conductive properties. Pr increases means momentum diffusivity is very high and thermal 

diffusivity may be low or high (i.e. if the fluid has high thermal conductivity, this is the case in which maximum heat transfer 

takes place). Due to high thermal conductivity the heat also diffuses faster and also the movement of fluid is faster due to quick 

response of mass flow due to density differences. 

In Fig.2 it is found that increment in Pr is to enhance the heat transfer in fluid layer, these are the results compatible with the one 

obtained by Bhadauria et al. [19] while considering low viscous fluids for stationary mode of convection.  In rotating fluid flows, 

the Taylor number (Ta) characterizes the importance of inertial forces due to rotation, relative to viscous forces. When Ta 

increases, which means either centrifugal forces may grow or kinematic viscosity may reduce as a consequences fluid will not 

move freely and then system may stabilizes. In Fig.3 the effect of Taylor number is to stabilize the system for certain finite range 

of Taylor number (up to 6000 nearly), suddenly an opposite effect takes place for large values of Ta>6000, confirming the results 

of Rauscher and Kelly [13] given in Fig 4. In general, obtaining Ta very large is not possible but for justifying what happens if one 

consider high rotation in the system. From the Fig.5 one can see that, the effect of an amplitude of modulation enhance the heat 

transfer as increases but opposite in the case of frequency   given in figure 6. From the Fig.6 we find that the effect of gravity 

modulation decreases as the frequency of modulation increases, and finally when 
f   is very large the effect of modulation 

disappears altogether, thus conforming the results of ([24, 25], [27, 28]). 

 In Fig.7 we have shown the difference between modulated and unmodulated cases. The nature is quite different in unmodulated 

case, for lower values of s, Nu increases and for high values of s steady state achieves. The heat transfer is quantified for gravity 

modulation and compared with the present results in Fig.7. But, as for gravity modulation, the modulated flows transport less heat 

than their corresponding unmodulated flows conform the results of ([32]-[40]). In figure 8 we compare the results of oscillatory 

and stationary mode of convection. It is found that heat transfer is more in oscillatory mode of convection than in stationary mode. 

It can be observed that Nust < Nuosc for the same wave number. This implies that oscillatory instabilities can set in before 

stationary mode. Similar results has also been obtained by Kim et al. [29] and Bhadauria and Kiran ([19,20]). 
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In Fig.9 we have presented our results in terms of averaged Nusselt number to see the effect of frequency of gravity modulation. 

From the Fig.9(a) it is evident that for lower values of frequency of modulation there is an enhancement in ( Nu  ), further 

increases 
f  achieves steady state. We also can observe effect of Pr in Fig.9 (a) is to enhance the heat transfer and effect of Ta in 

Fig.9(b) is to diminish the heat transfer. 

In Figures 10 and 11, the stream lines and the corresponding isotherms are depicted for gravity modulation, respectively at s = 0:0; 

1:0; 1:5; 2:0; 3:0; 6:0 for P r = 0:1; T a = 500; 2 = 0:1 = 2:0 and = 0:5. From the Figures we found that initially when the time is 

small the magnitude of streamlines is also small given in figures 10(a) and (b), and isotherms are straight that is the system is in 

conduction state figure 11(a) and (b). However, as time increases, the magnitude of streamlines increases and the isotherms loses 

their evenness. This shows that the convection is taking place in the system. Convection becomes faster on further increasing the 

value of time s. However, the system achieves the study state beyond s = 0:16 as there is no change in the streamlines and 

isotherms gures 10(d,e,f)-11(d,e,f). 

 

5. CONCLUSIONS 

The effect of gravity modulation on a rotating Rayleigh Benard convection for oscillatory mode has been investigated considering 

a weak nonlinear stability analysis resulting in the complex Ginzburg Landau amplitude equation. The following conclusions are 

drawn: 

1. Effect of Prandtl number Pr is to advance the onset of convection and hence enhance the heat transport. 

2. The Taylor number Ta has duel effect on Rayleigh-Benard convection either is to decrease or increase for (Ta > 6000) the heat 

transport for all three types of modulations. 

3. Amplitude of modulation is advance the convection and hence heat transfer. 

4. The frequency 
f   of modulation is decrease the heat transfer. 

5. The maximum heat transfer (Nu) for lower range of
f , diminishes with higher values of 

f   . 

 

6. APPENDIX 

The governing equations of the problem are given by Chandrasekhar [10]: 
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The coefficients given in the Eq. (31) are 
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The coefficients given in the Eq. (37) are defined by 
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